Improved Parabolization of the Euler Equations
نویسندگان
چکیده
We present a new method for stability and modal analysis of shear flows and their acoustic radiation. The Euler equations are modified and solved as a spatial initial value problem in which initial perturbations are specified at the flow inlet and propagated downstream by integration of the equations. The modified equations, which we call one-way Euler equations, differ from the usual Euler equations in that they do not support upstream acoustic waves. It is necessary to remove these modes from the Euler operator because, if retained, they cause instability in the spatial marching procedure. These modes are removed using a two-step process. First, the upstream modes are partially decoupled from the downstream modes using a linear similarity transformation. Second, the error in the first step is eliminated using a convergent recursive filtering technique. A previous spatial marching method called the parabolized stability equations uses numerical damping to stabilize the march, but this has the unintended consequence of heavily damping the downstream acoustic waves. Therefore, the one-way Euler equation could be used to obtain improved accuracy over the parabolized stability equations as a low-order model for noise simulation of mixing layers and jets.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملModeling of the beam discontinuity with two analyses in strong and weak forms using a torsional spring model
In this paper, a discontinuity in beams whose intensity is adjusted by the spring stiffness factor is modeled using a torsional spring. Adapting two analyses in strong and weak forms for discontinuous beams, the improved governing differential equations and the modified stiffness matrix are derived respectively. In the strong form, two different solution methods have been presented to make an a...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملModeling of the Beam Discontinuity with Two Analyses in Strong and Weak Forms using a Torsional Spring Model
In this paper, a discontinuity in beams whose intensity is adjusted by the spring stiffness factor is modeled using a torsional spring. Adapting two analyses in strong and weak forms for discontinuous beams, the improved governing differential equations and the modified stiffness matrix are derived respectively. In the strong form, two different solution methods have been presented to make an a...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کامل